
Acta Cryst. (2000). A56, 119±126 Allen et al. � Dynamical electron diffraction 119

research papers

Acta Crystallographica Section A

Foundations of
Crystallography

ISSN 0108-7673

Received 28 September 1999

Accepted 1 November 1999

# 2000 International Union of Crystallography

Printed in Great Britain ± all rights reserved

Inversion of dynamical electron diffraction data
including absorption

L. J. Allen,a* H. M. L. Faulknera and H. Leebb

aSchool of Physics, University of Melbourne, Parkville, Victoria 3052, Australia, and bInstitut fuÈ r

Kernphysik, Technische UniversitaÈt Wien, Wiedner Hauptstrasse 8-10/142, A-1040 Vienna,

Austria. Correspondence e-mail: lja@physics.unimelb.edu.au

A method to invert the dynamical diffraction of high-energy electrons inside a

crystal, which takes into account absorption, is discussed. It is shown that,

working at ®xed energy, the projected potentials associated with both the elastic

and the absorptive scattering can be uniquely obtained from the scattering

matrix. Inversion is possible for any principal orientation of the incident beam.

Model examples are given.

1. Introduction

During the last two decades, considerable effort has been

devoted to ®nding ways to retrieve not only the amplitude but

also the phase of the complex wave function at the exit surface

of a crystal in high-energy transmission electron diffraction.

Holography (Lichte, 1991; Orchowski et al., 1995) allows

retrieval of the pertinent phase information, as does the

information in a through-focus series of images (Kirkland,

1984; Tonomura, 1987; Van Dyck & Coene 1987; Lichte, 1991;

Coene et al., 1992; Gribelyuk & Hutchison, 1992; Van Dyck &

Op de Beeck, 1993). Another approach, known as ptychog-

raphy (from the Greek ����, meaning fold), is to determine

the phase of the wave function via the interference patterns in

overlapping convergent-beam electron diffraction (CBED)

discs obtained using a coherent incident beam (Nellist et al.,

1995; Spence, 1998).

Attempts have been made to implement an inversion of the

dynamical (multiple) scattering and recover the crystal struc-

ture (projected potential) from the exit-surface wave function

for a single orientation of the incident beam (Gribelyuk, 1991;

Beeching & Spargo, 1993; Peng & Wang, 1994; Dorset, 1995;

Peng & Zuo, 1995; Gilmore, 1996; Lentzen & Urban, 1996;

Van Dyck & Op de Beeck, 1996; Zou et al., 1996; Zhu & Tafto,

1997), assuming that the space group of the lattice is known,

e.g. by the method proposed by Zuo (1993). It has recently

been pointed out (Allen et al., 1999) that this problem is

underdetermined, unless the crystalline slab is suf®ciently

thin. The scattering process is described by the S matrix, which

relates the incident wave function (usually assumed to be a

plane wave) to that at the exit surface of the crystal. The S
matrix contains the information about the structure and the

interactions within the crystal via the Bethe or structure

matrix A in a nonlinear way. In general, because of this

nonlinearity, an unambiguous determination of A from the

scattering matrix S requires that all of the complex elements

of S are known, while the measurement of the exit-surface

wave function for a single orientation provides (via a Fourier

transform) only elements of one column of S (Allen et al.,

1999). The elements in the other columns of the S matrix can

be found by transforming the exit-surface wave function

obtained at well de®ned secondary orientations. These

secondary orientations are related to the principal orientation

by changes in the components of the incident wavevector by a

reciprocal-lattice vector, all of which are assumed to be

con®ned to the zero-order Laue zone (Allen et al., 1998, 1999;

Spence, 1998). The phase-retrieval techniques discussed in the

previous paragraph can, in principle, also be used at these

secondary orientations to determine the exit-surface wave

function.

A solution to the problem of retrieving the structure matrix

A from the scattering matrix S in dynamical electron

diffraction (at a ®xed energy) has recently been given (Allen et

al., 1999). Absorption of electrons from the elastically scat-

tered beams is not catered for in that work but, for thicker

crystals, absorption is a crucial part of the physics. The inverse

scattering method proceeds via sets of linear equations which

allow a unique determination of A. Constraints are provided

by the fact that the diagonal elements of A are known

(determined by the principal orientation of the incident beam)

and that A has general symmetries across its antidiagonal. For

a symmetric orientation of the incident beam, the symmetries

across the antidiagonal of A yield trivial constraints and the

orientation information in the diagonal of A is insuf®cient to

determine A from S uniquely. However, it is experimentally

convenient to work at this orientation. Furthermore, correct

phasing of the S matrix is facilitated by the fact that, for a

symmetric orientation, it has (nontrivial) symmetries across its

antidiagonal similar to those in A (Spence, 1998; Allen et al.,

1998, 1999). In this paper, inversion of the dynamical scat-

tering including absorption and for any principal orientation

of the incident beam is addressed. The projected potentials

associated with both the elastic and the absorptive scattering

can be uniquely obtained from the scattering matrix S.
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The inversion of dynamical electron diffraction is also being

addressed from other perspectives. Examples of very recent

work are that due to Spence et al. (1999), who have discussed a

method limited to centrosymmetric structures based on

projection onto convex sets, Rez (1999), who has suggested

schemes to determine the crystal potential by varying the

incident energy, and Sinkler & Marks (1999), who have

discussed the use of minimum-relative-entropy approaches.

2. The forward-scattering problem

In this section, we give the essential points of the forward

(direct) problem for the scattering of high-energy electrons,

taking into account absorptive scattering. The SchroÈ dinger

equation can be cast in the form of an eigenvalue problem

(Humphreys, 1979; Allen & Rossouw, 1989):

AC � C�2K�i�D: �1�

Here A is the structure (Bethe) matrix and has the form

A �

..

. ..
. ..

. ..
. ..

.

. . . ÿ�kt � h�2 � iU00 Whÿg Wh Wh�g W2h . . .

. . . Wgÿh ÿ�kt � g�2 � iU00 Wg W2g Wg�h . . .

. . . Wÿh Wÿg ÿk2
t � iU00 Wg Wh . . .

. . . Wÿgÿh Wÿ2g Wÿg ÿ�kt ÿ g�2 � iU00 Wÿg�h . . .

. . . Wÿ2h Wÿhÿg Wÿh Wÿh�g ÿ�kt ÿ h�2 � iU00 . . .

..

. ..
. ..

. ..
. ..

.

0BBBBBBBBBBB@

1CCCCCCCCCCCA
;

�2�

where g and h are reciprocal-lattice vectors and

Wg � Ug � iU 0g: �3�

The Wg are Fourier coef®cients in the optical potential for the

scattering of electrons from the crystal. The real part of the

periodic crystal potential (associated mainly with elastic

Coulomb scattering) is written as

V�r� � �h- 2=2m�P
g

Ug exp�ig � r�: �4�

The effect of absorptive (inelastic) scattering processes is

taken into account by a component iV 0�r� in the optical

potential and V 0�r� is written as

V 0�r� � �h- 2=2m�P
g

U0g exp�ig � r�: �5�

The wavevector kt in equation (2) is the tangential component

of the incident electron wavevector k in vacuum, along the

plane de®ned by the reciprocal-lattice vectors. K is the

magnitude of the incoming wavevector corrected for refrac-

tion, i.e. K2 � k2 � U0, where U0 gives the mean of the crystal

potential associated with elastic scattering. The matrix C has as

columns the eigenvectors of A and can be explicitly written as

follows:

C �

..

. ..
. ..

. ..
.

C1
h C2

h . . . Ci
h . . .

C1
g C2

g . . . Ci
g . . .

C1
0 C2

0 . . . Ci
0 . . .

C1
ÿg C2

ÿg . . . Ci
ÿg . . .

C1
ÿh C2

ÿh . . . Ci
ÿh . . .

..

. ..
. ..

. ..
.

0BBBBBBBBBB@

1CCCCCCCCCCA
: �6�

Lastly, in equation (1), �2K�i�D is the diagonal matrix

containing the (complex) eigenvalues of A.

Since the potentials V�r� and V 0�r� given by equations (4)

and (5), respectively, are real, Ug � U�ÿg and U0g � U0�ÿg.

(We make the assumption that, for every reciprocal-

lattice vector g, the vector ÿg is included in the representa-

tion of A.) However, in the presence of absorption,

�Ug � iU 0g� 6� �Uÿg � iU 0ÿg�� and A is not hermitian. Thus, the

matrix of eigenvectors given by equation (6) is not unitary.

Let us assume an N-beam approximation (A becomes an

N � N matrix). Furthermore, let us relabel the elements of the

corresponding N � N eigenvector matrix C as follows:

C �
C11 C12 . . . C1i . . . C1N

C21 C22 . . . C2i . . . C2N

..

. ..
. ..

. ..
. ..

. ..
.

CN1 CN2 . . . CNi . . . CNN

0BBB@
1CCCA: �7�

This relabelling facilitates writing down the representation for

the elements of A, which follows from equation (1). Let the

reciprocal-lattice vector gn occur in the nth row of equation (7)

and similarly for gm. Then we can write

Agn;gm
� 2K

P
i

Cni�
i�Cÿ1�im; �8�

where the sum extends over N terms. �Cÿ1�im is the element in

the ith row and mth column of the inverse of C. The change in

notation for the elements of C will also facilitate writing down

some later equations.

The elements of the matrix C and the eigenvalues 2K�i

allow us to construct the wave function of the fast electron in

the crystal as a sum of Bloch states,

 �r� �P
i

�i'i�r� �P
i

�i
P

g

Ci
g exp�i�ki � g� � r�: �9�

Each Bloch state 'i�r� is characterized by an intrinsic wave-

vector ki which depends on the energy of the incident beam as

well as on the crystal structure and can be obtained from the

A �

..

. ..
. ..

. ..
. ..

.

. . . ÿ�kt � h�2 � iU00 Whÿg Wh Wh�g W2h . . .

. . . Wgÿh ÿ�kt � g�2 � iU00 Wg W2g Wg�h . . .

. . . Wÿh Wÿg ÿk2
t � iU00 Wg Wh . . .

. . . Wÿgÿh Wÿ2g Wÿg ÿ�kt ÿ g�2 � iU00 Wÿg�h . . .

. . . Wÿ2h Wÿhÿg Wÿh Wÿh�g ÿ�kt ÿ h�2 � iU00 . . .

..

. ..
. ..

. ..
. ..

.

0BBBBBBBBBBB@

1CCCCCCCCCCCA
; �2�



solution of the SchroÈ dinger equation. The wavevectors ki can

be expressed in the form ki � K� �in̂, where K is the wave-

vector of the incoming plane wave in the crystal and the

complex eigenvalue �i �  i � i�i (Humphreys, 1979; Allen &

Rossouw, 1989). The unit vector n̂ is a surface normal directed

into the entrance crystal surface, the  i are the Anpassung and

the �i the absorption coef®cients. The �i are obtained from the

boundary conditions at the entrance surface of the crystal,

which require that the amplitude of the directly transmitted

beam is 1 and the amplitudes of the diffracted beams are 0. It

is found (Sheinin & Jap, 1979; Allen & Rossouw, 1989) that

�i � �Cÿ1�i;�N�1�=2, i.e. it is the ith element in the central

column of Cÿ1. At the exit surface of the crystal, the Bloch

waves decouple into plane waves. At this transition, the

tangential components remain unchanged and therefore the

amplitude of the beam g for a crystal of thickness t is obtained

from equation (8) as

vg�t� �
P

i

�iCi
g exp�i�it�: �10�

Introducing the vector v � �vg�, we can write equation (8) in

the compact form

v � Su: �11�
The vector u � ��g0� characterizes the incident beam (a plane

wave) and

S � exp��it=2K�A� � C�exp�i�it��DCÿ1 � C��i�DCÿ1 �12�
is the scattering matrix, where once again � �D denotes a

diagonal matrix. The scattering matrix relates the incident

electron wave at the entrance surface of the crystal to the

diffracted wave at the exit surface of the crystal of thickness t

(Humphreys, 1979). Note that, since A is not hermitian when

absorption is included, S is not unitary. Schematically, we can

represent S as

S �

..

. ..
. ..

. ..
. ..

.

. . . Sh;h Sh;g Sh;0 Sh;ÿg Sh;ÿh . . .

. . . Sg;h Sg;g Sg;0 Sg;ÿg Sg;ÿh . . .

. . . S0;h S0;g S0;0 S0;ÿg S0;ÿh . . .

. . . Sÿg;h Sÿg;g Sÿg;0 Sÿg;ÿg Sÿg;ÿh . . .

. . . Sÿh;h Sÿh;g Sÿh;0 Sÿh;ÿg Sÿh;ÿh . . .

..

. ..
. ..

. ..
. ..

.

0BBBBBBBBBB@

1CCCCCCCCCCA
:

�13�
Let the reciprocal-lattice vector gn correspond to the nth row

of equation (7) and similarly for gm. Then, for an N-beam

approximation, we have the representation

Sgn;gm
�P

i

Cni exp�i�it��Cÿ1�im �14�

for the S matrix.

3. The inverse scattering problem

The inverse scattering problem is to obtain A from a knowl-

edge of S, which we assume has been fully determined, as

discussed in the Introduction. From equation (12), we can

write

A � �2K=it� ln�S� � �2K=it�C ln��i�DCÿ1 � �2K=it�C�i�it�DCÿ1:

�15�
This expresses A in terms of the eigenvectors and eigenvalues

of S. [It can easily be shown from equation (12) that the

eigenvectors of S are the same as those of A.] However, in

taking the natural logarithm of ��i�D (which, since it is a

diagonal matrix, means taking the natural logarithm of each

diagonal element), ambiguities arise since

ln��i� � i�it � ln j�ij � i�� i � 2ni��; ni � 0;�1;�2; . . . ;

�16�
where � i is the principal value of the amplitude of �i. The

logarithm is an in®nitely many valued function.

To resolve these ambiguities, we proceed in a manner

analogous to that outlined by Allen et al. (1999) for the case of

elastic scattering only, except that here we will also provide a

solution for symmetric orientations of the incident beam. With

the inclusion of absorption, the elements on the diagonal of

the A matrix are given by Agn;gn
� ÿ�kt � gn�2 � iU 00, where

the additional term U 00 gives the mean value of the absorption

potential. This leads to a set of N linear equations in the N

unknown �i's:P
i

Cni�Cÿ1�in�i � �ÿ�kt � gn�2 � iU 00�=2K; �17�

where the matrix elements Cni and �Cÿ1�in are obtained after

diagonalizing S. The use of these equations in the dynamical

inversion implies an a priori knowledge of both U0 and U00 (the

former implicit in K). If U0 is not known, the approximation

K � k is a good one for high-energy electrons. We could also

simply neglect the term U00. We will investigate these

approximations in our model calculations in the next section.

Further linear equations involving the �i's can be obtained

using the fact thatAgk;gl
� Ugkÿgl

� Ugmÿgn
� Agm;gn

whenever

gk ÿ gl � gm ÿ gn, for k 6� l and m 6� n. Using equation (8),

these symmetries lead to the following set of homogeneous

linear equations:P
i

�Cki�Cÿ1�il ÿ Cmi�Cÿ1�in��i � 0

whenever gk ÿ gl � gm ÿ gn; for k 6� l and m 6� n:

�18�
Here, gj refers to the reciprocal-lattice vector de®ning the jth

row of C given in equation (7). A subset of these equations,

which are always present in the A matrix, are symmetries that

A has across its antidiagonal (Allen et al., 1998, 1999) given by

Ak;l � AN�1ÿl;N�1ÿk, with k 6� l if kt 6� 0 and where k and l

label rows and columns in A, respectively. Using equation (4),

we can express this as follows:P
i

�Cki�Cÿ1�il ÿ CN�1ÿl;i�Cÿ1�i;N�1ÿk��i � 0

with k 6� l if kt 6� 0 and k� l � N: �19�
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The remaining constraints of the type given by (18) and

independent of those given by (19) are found by con®ning

ourselves to the antidiagonal of A and above to giveP
i

�Cki�Cÿ1�il ÿ Cmi�Cÿ1�in��i � 0 with gk ÿ gl � gm ÿ gn;

k� l � N � 1 and m� n � N � 1: �20�

Fig. 1 shows the indexing of the A matrix for the [110] zone

axis in a face-centered-cubic system (such as GaAs) in a

seven-beam approximation. The central column shows the

pertinent seven reciprocal-lattice vectors. The symmetries

across the antidiagonal evident in equation (2) and leading to

equation (19) are explicitly seen in Fig. 1 for this case ± for

example, one of these symmetries (there are 18 in total) is

indicated by the two ringed indices that each have the value

�1; �1; 3�. There are six symmetries leading to constraints of the

type given by equations (20), as indicated. We will investigate

the use of these relations in uniquely retrieving the eigen-

values 2K�i of A in the next section. For a zone-axis case, the

symmetries given by equations (20) are obtained by inspection

of the indexing of the A matrix for the particular space group

considered. However, for a systematic row orientation, we

observe that the A matrix becomes a band matrix of the form

A �

..

. ..
. ..

. ..
. ..

.

. . . ÿ�kt � 2g�2 � iU 00 Wg W2g W3g W4g . . .

. . . Wÿg ÿ�kt � g�2 � iU00 Wg W2g W3g . . .

. . . Wÿ2g Wÿg ÿk2
t � iU 00 Wg W2g . . .

. . . Wÿ3g Wÿ2g Wÿg ÿ�kt ÿ g�2 � iU00 . . .

. . . Wÿ4g Wÿ3g Wÿ2g Wÿg ÿ�kt ÿ 2g�2 � iU00 . . .

..

. ..
. ..

. ..
. ..

.

0BBBBBBBBBBB@

1CCCCCCCCCCCA
:

�21�

This means the symmetries given by equation (20) are

generally evident, owing to the band structure of A which

occurs irrespective of the space group or systematic row.

If kt � 0, then equations (19) also hold for k � l. Thus, we

have a matrix for which the given symmetry is true for all

elements on or above the anti-diagonal. The coef®cients of �i

in equation (19) are then all zero (see Appendix A). When

kt � 0, equations (17) are no longer linearly independent and

yield at most �N � 1�=2 linearly independent (complex)

equations, while we must ®nd N complex parameters �i. This is

similar to the case of no absorption (Allen et al., 1999). We

then must use equations (17) and (20) to uniquely obtain the

�i and henceA. N needs to be large enough for equations (17)

and (20) to have a coef®cient matrix that is rank N (it is

evident that N � 3 will not work). However, this is not an

important restriction in practice, as we will see in the next

section. Furthermore, the rank of the set of linear equations

we use to obtain the �i, and thus the uniqueness of the solu-

tion, is easily checked and there is no danger of unwittingly

obtaining a spurious solution to the inversion problem.

Having solved the inversion step S ! A, we can calculate

the Fourier coef®cients Ug and U0g in equations (4) and (5)

from (Spence, 1993)

Ug � �Wg �W�ÿg�=2 and U0g � �Wg ÿW�ÿg�=2i: �22�

The potential associated with elastic scattering and that due to

absorption can thus each be recovered separately.

4. Model solutions of the inverse scattering problem

We consider the �110� zone axis in GaAs as an example and

calculate the S matrix, which is then used as input in testing

our inversion procedure. Our calculations were for an incident

electron energy of 400 keV and a crystalline slab of thickness

1000 AÊ . However, the method works for arbitrary incident

energy and sample thickness. The thickness need not be

known explicitly. We will continue with N � 7 for our detailed

example, chosen for simplicity of illustration, but we empha-

size that the method works just as well for larger values of N.

The Fourier coef®cients for the elastic potential were calcu-

lated using the electron scattering factors provided by Waas-

maier & Kirfel (1995) and thermal effects are incorporated via

a Debye±Waller factor. A temperature factor B � 0:6 AÊ 2 was

used for both Ga and As, as was done by Lentzen & Urban

(1996) and subsequently by Allen et al. (1998). Absorption will

Figure 1
Indexing of the structure matrix for the �110� zone axis for a face-
centered-cubic structure. A symmetry of the type given by equation (19)
is indicated by the ringed elements, each labelled 1�13. Six symmetries of
the type given by equation (20) are evident above the antidiagonal.

A �

..

. ..
. ..

. ..
. ..

.

. . . ÿ�kt � 2g�2 � iU00 Wg W2g W3g W4g . . .

. . . Wÿg ÿ�kt � g�2 � iU 00 Wg W2g W3g . . .

. . . Wÿ2g Wÿg ÿk2
t � iU00 Wg W2g . . .

. . . Wÿ3g Wÿ2g Wÿg ÿ�kt ÿ g�2 � iU 00 . . .

. . . Wÿ4g Wÿ3g Wÿ2g Wÿg ÿ�kt ÿ 2g�2 � iU00 . . .

..

. ..
. ..

. ..
. ..

.

0BBBBBBBBBBB@

1CCCCCCCCCCCA
: �21�



be included in the calculations assuming that it is due to

thermal diffuse scattering (TDS) based on an Einstein model

(Hall & Hirsch, 1965; Allen & Rossouw, 1989; Bird & King,

1990). TDS is the main absorptive mechanism leading to loss

of diffraction contrast. The real part of the projected potential

V�r� is shown in Fig. 2(a) and the potential V 0�r� representing

absorption due to TDS is shown in Fig. 2(b). These repre-

sentations of the potential (each with 19 Fourier coef®cients)

are of course not converged, as can be seen by comparison

with Fig. 1 in Allen & Rossouw (1993), where many more

Fourier coef®cients were used to plot the potentials. It is worth

noting that, while V�r� is intrinsic to the crystal, depending

only on the temperature, V 0�r� (for TDS) is energy-dependent.

The S matrix has been calculated and then diagonalized to

®nd its eigenvectors for each of the principal orientations

shown in Table 1. The outcomes of retrieving the set f�ig
correctly (uniquely) using equations (17) alone, equations (17)

and (19), and then equations (17) and (20) to determine the

parameters f�ig are noted. We solve the set of linear equations

to obtain the f�ig using the method of singular-value decom-

position (SVD) as discussed by Press et al. (1992), which easily

accommodates the solution of more equations than unknowns.

As expected, there is insuf®cient information to determine the

�i in the symmetric orientation using equations (17) and (19).

We must then use equations (17) and (20). For the �110� zone

in a face-centered-cubic structure, equations (20) arise from

the symmetries labelled 1 to 6 in Fig. 1. For kt � �000�,
equations (17) yield only three linearly independent equations

for the �i out of �N � 1�=2 � 4 possible linearly independent

equations, since the equations relating to the f110g-type

re¯ections are the same. The symmetries labelled 1 to 4 in Fig.

1 yield the remaining four equations that are required to

determine the �i uniquely. It should be noted that the

symmetries labelled by 5 and 6 yield similar equations to those

Acta Cryst. (2000). A56, 119±126 Allen et al. � Dynamical electron diffraction 123
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Figure 2
Real and imaginary (absorptive) parts of the optical potential for the �110� zone axis in GaAs. (a) The input model real potential (mean potential V0

included). (b) The input absorptive potential (mean potential V 00 included). The potentials obtained by inversion, assuming that V0 and V 00 are known, are
the same as those in (a) and (b) to high accuracy and indistinguishable on the scale of the ®gure. Assuming that V 00 and V0 are not known for the purposes
of inversion and assumed zero, we obtain the real potential and absorptive potential shown in (c) and (d), respectively.
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labelled by 3 and 4, respectively. It is also worth pointing out

that while the equations obtained from symmetries 1 and 2 are

complex conjugates, complex conjugation is not a linear

operation and thus the equations are linearly independent.

When kt � �00�1�, i.e. the re¯ection 002 is in the exact Bragg

orientation (case 2), then there is still suf®cient symmetry in

the system to render equations (17) linearly dependent.

However, addition of the symmetry constraints, equations

(19), determines the f�ig uniquely. Tilting along the ��110�
direction gives similar results. Tilting so that the re¯ection 1�11

is in the exact Bragg orientation removes symmetries and

allows a unique determination of the f�ig via equations (17). A

similar breaking of symmetries occurs for the arbitrary

orientation given in case 5 and once again the orientation

constraints are suf®cient to solve for the f�ig. We have

assumed that the mean potentials are known in these tests.

With this assumption, the potentials shown in Figs. 2(a) and

2(b) are retrieved to high precision (at least six-®gure accu-

racy). The results are not signi®cantly changed if we assume

that K � k since, at 400 keV, K � 60:8326 AÊ ÿ1 and

k � 60:8311 AÊ ÿ1. Assuming both V0 � 0 and V 00 � 0, we

obtain by inversion the potentials shown in Figs. 2(c) and 2(d).

The real and absorptive potentials obtained from the exact

and approximate inversions differ by the mean potentials

V0 � 14:68 and V 00 � 0:3164 eV, respectively. The differences

are exact to the number of ®gures quoted for the mean

potentials. This is consistent with the level of agreement

between K and k. It is not surprising that the approximate

inversion only amounts to these shifts, since V 0�r� is an order

of magnitude smaller than V�r� and the absorptive scattering

can be treated perturbatively (Humphreys, 1979; Allen &

Rossouw, 1989).

Next we have tested the use of equations (17) and (20) to

solve the dynamical inversion problem for kt � 0 for several

crystals, systematic rows and zone axes. Provided that the

number of beams is large enough (typically of the order of

ten), then a unique reconstruction of A from S was always

achieved. [We note that, in contrast, when using equations (17)

and (19) for kt 6� 0, unique solutions to the inverse scattering

problem can be found for any odd N � 3.] These results are

shown in Table 2. The results found are independent of inci-

dent energy and crystal temperature and thickness. For all the

results shown, with the exception of those in the last line, the

number of beams indicated is the minimum number for which

the inversion procedure worked, and not excluding any beams

with the same magnitude (scattering angle) as those already in

the set. For example, for the �111� zone axis in GaAs or Si, 15

beams are suf®cient but this excludes some reciprocal-lattice

vectors of the same magnitude as some already included. All

systematic row cases required only ®ve beams. Notice that, for

the �110� zone-axis case in Si, which is centrosymmetric, nine

beams were required for a unique solution, unlike GaAs

(noncentrosymmetric), which required only seven. The

centrosymmetry of silicon means that the origin of the unit cell

can be chosen so that the structure factors are real. Then the

equations that are obtained from symmetries 1 and 2, which

are related by complex conjugation, become identical. In

practice, it is likely that a unique solution to the inversion

problem for the symmetric orientation using equations (17)

and (20) will be possible for values of N well below those

giving a reasonable representation of the dynamical scattering.

The increase in the number of symmetries, leading to

constraints of the type in equations (20), with N is shown in

Fig. 3 for the �110� zone axis in a face-centered-cubic structure.

The results in the last line of Table 2, for GaAs with 129 beams

and the superconductor Bi2Sr2CaCu2O8 with 67 beams, show

that the inversion method works for large numbers of beams

and for more complex structures.

Lastly, we note that degeneracies in the eigenvalues of S
(and hence those of A) do not pose a problem for the inver-

sion method. For example, consider the second case in Table 2,

namely the GaAs �100� zone axis with N � 13. In that case,

there are three degenerate eigenvalues.

5. Summary and conclusions

The main steps in the inversion of the dynamical scattering,

taking into account absorptive processes, can be described as

follows. We assume that all the complex elements of the

Table 1
The S matrix has been calculated for each of the indicated principal
orientations about the [110] zone axis in GaAs (incident energy 400 keV,
thickness 1000 AÊ , including absorption in the form of TDS and using
N � 7 beams).

The outcomes of retrieving the complex eigenvalues 2K�i of the structure
matrix A uniquely using equations (17), equations (17) and (19), and then
equations (17) and (20) are noted.

Case kt Equation (17)
Equations
(17)+(19)

Equations
(17)+(20)

1 �0; 0; 0� No No Yes

2 �0; 0; �1� No Yes Yes

3 ��1; 1; 0� No Yes Yes

4 ��12; 1
2 ;

�1
2� Yes Yes Yes

5 �1; �1; 3
4� Yes Yes Yes

Table 2
Test cases for several crystals for a number of exact symmetric (systematic
row) or zone-axis orientations which provide a unique solution to the
dynamical inversion problem using equations (17) and (20).

Crystal Systematic row/zone axis N

GaAs [110] zone axis 7
GaAs [100] zone axis 13
GaAs [111] zone axis 19
GaAs [332] zone axis 7
GaAs {100} systematic row 5
GaAs {111} systematic row 5
GaAs [110] zone axis 129
Si [110] zone axis 9
Si [100] zone axis 13
Si [111] zone axis 19
Si [332] zone axis 7
Si {100} systematic row 5
Si {111} systematic row 5
Bi2Sr2CaCu2O8 [001] zone axis 67



scattering matrix S, for a given energy and thickness, have

been determined (up to an arbitrary overall phase) using a

through-tilt series of measurements at the principal and well

de®ned secondary orientations of the incident beam. S is then

diagonalized to obtain its eigenvectors. The eigenvectors of S
and A are the same. The eigenvalues 2K�i of A are then

obtained uniquely using equations (17) (following from

knowledge about the diagonals ofA, which are determined by

the principal orientation, U0 and U 00) and (19) (derived from

general symmetries of A across its antidiagonal) or (20). For

an exact zone-axis orientation of the incident beam, when

we must use equations (20), N needs to be large enough.

However, this is a constraint which is likely to be always

satis®ed when realistically modeling the dynamical scattering

with a suf®cient number of beams. The matrix A is then

constructed (uniquely) from its eigenvectors and eigenvalues

using the representation of A given by (8). Both the projected

potential associated with elastic scattering and that associated

with absorption are obtained. Note that it is not necessary to

know the thickness of the crystalline slab explicitly.

The inversion of the dynamical scattering proceeds via the

solution of sets of linear equations, yields a unique solution

and is numerically stable. The main challenge in the practical

implementation of the methods discussed here is the accurate

determination of the scattering matrix S. The amplitude and

phase of all elements needs to be known. This requires the

determination of the exit-surface wave function at the prin-

cipal and secondary orientations of the incident beam. Work

on phase retrieval to date, of which we are aware, has been

limited to the symmetric orientation of the incident beam.

Methods using conservation of ¯ux (Van Dyck & Coene, 1987)

are likely to need modi®cation for signi®cant tilts away from

the symmetric orientation. Furthermore, in the determination

of S, errors in orientation and energy of the incident beam,

lens aberrations, detector noise etc. will need to be carefully

considered. Lens apertures restrict the number of beams

contributing to images and the number of beams that are

important may vary with thickness. These issues will be

investigated in future work.

APPENDIX A

From equation (1), we can express the eigenvalues of A as

2K�i �P
k

P
l

�Cÿ1�ikAklCli: �23�

Assume that kt � 0. Then Ak;l � AN�1ÿl;N�1ÿk for all k and l.

It then follows that At
k;l � AN�1ÿk;N�1ÿl , where t denotes an

element in the transpose. Now, using the fact that �2K�i�D is a

diagonal matrix, and therefore is its own transpose, we can

write

2K�i �P
k

P
l

�C�tikAt
kl�Cÿ1�tli

�P
k

P
l

�C�kiAN�1ÿk;N�1ÿl�Cÿ1�il: �24�

Now, making the change of variables m � N � 1ÿ k and

n � N � 1ÿ l, we obtain

2K�i �P
m

P
n

CN�1ÿm;iAmn�Cÿ1�i;N�1ÿn: �25�

From equations (23) and (25), it follows thatP
k

P
l

�Cki�Cÿ1�il ÿ CN�1ÿl;i�Cÿ1�i;N�1ÿk�Alk � 0: �26�

This can only be true for any choice of the matrix elements Alk

if their coef®cients are all zero.

LJA acknowledges ®nancial support from the Australian

Research Council. LJA appreciates the warm hospitality

extended to him during a visit to the Technische UniversitaÈ t

Wien and thanks Dr Mark Oxley and Dr Alan Spargo for

helpful discussions.

References

Allen, L. J., Josefsson, T. W. & Leeb, H. (1998). Acta Cryst. A54,
388±398.

Allen, L. J., Leeb, H. & Spargo, A. E. C. (1999). Acta Cryst. A55,
105±111.

Allen, L. J. & Rossouw, C. J. (1989). Phys. Rev. B, 39, 8313±8321.
Allen, L. J. & Rossouw, C. J. (1993). Phys. Rev. B, 47, 2446±2452.
Beeching, M. J. & Spargo, A. E. C. (1993). Ultramicroscopy, 52,

243±247.
Bird, D. M. & King, Q. A. (1990). Acta Cryst. A46, 202±208.
Coene, W., Janssen, G., Op de Beeck, M. & Van Dyck, D. (1992).

Phys. Rev. Lett. 69, 3743±3746.
Dorset, D. L. (1995). Acta Cryst. A51, 869±879.
Gilmore, C. J. (1996). Acta Cryst. A52, 561±589.
Gribelyuk, M. A. (1991). Acta Cryst. A47, 715±723.
Gribelyuk, M. A. & Hutchison, J. L. (1992). Ultramicroscopy, 45,

127±143.
Hall, C. R. & Hirsch, P. B. (1965). Proc. R. Soc. London Ser. A, 286,

158±177.
Humphreys, C. J. (1979). Rep. Prog. Phys. 42, 1825±1887.
Kirkland, E. J. (1984). Ultramicroscopy, 15, 151±172.
Lentzen, M. & Urban, K. (1996). Ultramicroscopy, 62, 89±102.
Lichte, H. (1991). Advances in Optical and Electron Microscopy,

edited by T. Mulvey & C. J. R. Sheppard, Vol. 12, pp. 25±91.
London: Academic Press.

Nellist, P. D., McCallum, B. C. & Rodenberg, J. M. (1995). Nature
(London), 374, 630±632.

Orchowski, A., Rau, W. D. & Lichte, H. (1995). Phys. Rev. Lett. 74,
399±402.

Acta Cryst. (2000). A56, 119±126 Allen et al. � Dynamical electron diffraction 125

research papers

Figure 3
Number of symmetries leading to equations of the type (20) as a function
of N (the dimension of the structure matrix A) for the �110� zone axis in a
face-centered-cubic structure.



research papers

126 Allen et al. � Dynamical electron diffraction Acta Cryst. (2000). A56, 119±126

Peng, L.-M. & Wang, S. Q. (1994). Acta Cryst. A50, 759±771.
Peng, L.-M. & Zuo, J. M. (1995). Ultramicroscopy, 57, 1±9.
Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P.

(1992). Numerical Recipes in Fortran, 2nd ed., pp. 375±381.
Cambridge University Press.

Rez, P. (1999). Acta Cryst. A55, 160±167.
Sheinin, S. S. & Jap, B. K. (1979). Phys. Status Solidi B, 91,

407±412.
Sinkler, W. & Marks, L. D. (1999). Ultramicroscopy, 75, 251±268.
Spence, J. C. H. (1993). Acta Cryst. A49, 231±260.
Spence, J. C. H. (1998). Acta Cryst. A54, 7±18.

Spence, J. C. H., Calef, B. & Zuo, J. M. (1999). Acta Cryst. A55,
112±118.

Tonomura, A. (1987). Rev. Mod. Phys. 59, 639±669.
Van Dyck, D. & Coene, W. (1987). Optik (Stuttgart), 77, 125±128.
Van Dyck, D. & Op de Beeck, M. (1993). Optik (Stuttgart), 93, 103±107.
Van Dyck, D. & Op de Beeck, M. (1996). Ultramicroscopy, 64, 99±107.
Waasmaier, D. & Kirfel, A. (1995). Acta Cryst. A51, 416±431.
Zhu, Y. & Tafto, J. (1997). Philos. Mag. B75, 785±791.
Zou, X., Sunberg, M., Larine, M. & HovmoÈ ller, S. (1996).

Ultramicroscopy, 62, 103±121.
Zuo, J. M. (1993). Ultramicroscopy, 52, 459±464.


